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Halo formation at early stage of injection in high-intensity hadron rings

Yoshito Shimosaki and Ken Takayama
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Halo formation under a nonequilibrium state for a two-dimensional Gaussian beam in a FODO lattice, which
is an array of magnets where F is focusing, D is defocusing, and O is the drift space between magnets, was
examined in terms of a transition of time-varying nonlinear resonances. Nonlinear resonant-interactions be-
tween individual particles and intrinsic beam-core oscillations result in a beam halo. The location of the halo
is analytically tractable using canonical equations derived from an isolated resonance Hamiltonian.

DOI: 10.1103/PhysRevE.68.036503 PACS number~s!: 29.27.Bd, 41.75.Ak
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I. INTRODUCTION

One of the major issues in high-power hadron accelera
is activation of the environment surrounding an accelera
due to beam loss. Beam loss must be reduced to a s
ciently low level to allow hands-on maintenance. In order
produce an acceptable design, it is important to unders
the mechanisms of emittance growth and halo formation
result in beam loss.

From this point of view, halo formation has been studi
by simulations and theoretical analyses. Especially, parti
in-cell ~PIC! simulation codes@1# and analysis using
particle-core models~PCM! @2# have greatly facilitated the
understanding of space-charge effects. In these studie
resonant interaction between the individual particles and
trinsic beam-core oscillations has been found to be a driv
mechanism of halo formation. However, an analysis us
PCM has been made on an equilibrium state, where the
emittance is constant. The beam property in a nonequ
rium condition, which takes a key role in the resonant int
action of an injected beam, is different from that in equili
rium. Therefore, the PCM could be misleading when
nonequilibrium state is discussed. In addition, it is inaccur
to apply a simulation analysis, such as an fast Fourier tra
form analysis and a Poincare´ map analysis, for a nonequilib
rium as that shown in this paper, because these analyses
to track over 100 turns, but the beam distribution var
through the nonequilibrium state in a much shorter time
riod.

The purpose of this paper is to examine halo format
under a nonequilibrium condition in a circular accelerator.
this context, we have been developing a useful anal
model, which is based on an isolated resonance Hamilto
~IRH!. This model allows us to predict the position and s
of the halo as a function of the beam and machine par
eters, even in nonequilibrium in terms of time-varying no
linear resonances.

The organization of this paper is as follows. In Sec. II, t
simulation results obtained by the newly developed~2D!
two-dimensional simulation codePATRASH ~particle tracking
in a synchrotron for halo analysis! are presented, where de
tails of the temporal evolution of the particle distribution
phase space are given. In Sec. III, the IRH is analytica
derived, while comparing it with the simulation results.
Sec. IV, the time-varying nonlinear resonances that are s
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gested from the simulation results are theoretically exami
based on the IRH. In Sec. V, the obtained results are sum
rized.

Before proceeding, assumptions concerning the calc
tions and the example discussed here are noted as foll
The calculations were carried out for 2D mismatched bea
with a Gaussian distribution in a typical FODO lattice. Mo
of the beam/machine parameters are taken from the 12-G
proton synchrotron of the High Energy Accelerator Resea
Organization~KEK-PS!, where the injection energy is 50
MeV and the circumference is 340 m. No external nonline
fields, except for space-charge originated fields, were
cluded in the present calculations. In order to manifest a
role of the space-charge effects in halo formation, accele
tion was not taken into account and the momentum spr
was assumed to be 0%. The combination of bare tu
(nx ,ny) chosen in the present study was close to the op
tional parameters@A(7.123,5.229) andB(7.203,5.229)]. In
the case ofA, a structure resonance due to a space-cha
effect in the horizontal direction has been pointed out in p
simulation results, but no resonance was shown in the cas
B @3#.

II. TEMPORAL EVOLUTION OF THE PARTICLE
DISTRIBUTION AFFECTED

BY NONLINEAR SPACE-CHARGE FIELDS

In order to delineate the halo-formation mechanisms i
typical FODO lattice, a 2D simulation codePATRASH has
been developed@3#. The electric field originating from the
space charge is calculated by the hybrid tree code met
PIC-style charge is assigned in the dense core region
way similar to that in Ref.@4#. Then, the tree code metho
@5# is applied over the total region of interest. The effects
the image charge are ignored. The space-charge forces
included asd-function-like kicks in orbit tracking. The lon-
gitudinal step size was chosen to be 10 cm, which gave
ficient saturation in the calculation results as a function
the step size.PATRASH’S results were compared with the re
sults ofACCSIM andSIMPSONS@6#, which have been indepen
dently developed and widely employed for particle tracki
in high-intensity hadron rings. The same beam parame
and machine conditions were assumed for this benchm
test. These results have been confirmed to be fairly in ag
ment with each other, as shown in Fig. 1@6#.
©2003 The American Physical Society03-1
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The simulations were carried out byPATRASH for 2D mis-
matched beams with the Gaussian distribution for both ca
of A and B. The initial phase-space projections of a m
matched beam are shown in Fig. 2, which were chosen f
the actual result observed on the KEK 500-MeV bea
transport line. The footprints on the tune diagram for 2
sampled particles are shown in Fig. 3. The maximum in
herent tune shifts were 0.25 in the horizontal plane and 0
in the vertical plane.

The rms emittance growth is shown in Fig. 4. The ho
zontal and vertical rms emittances in caseB quickly grew to
arrive in the equilibrium state after 5 turns. The vertical rm
emittance in caseA also quickly grew to arrive in equilib-
rium. On the other hand, the growth of the horizontal r
emittance showed a quite different feature; it continued
grow until 40 turns.

The phase-space projections in the horizontal direc
are shown in Figs. 5 and 6, where the particle distribut
stays in the nonequilibrium state. In caseA, the growth of the
four characteristic areas is notable, which are identified
the resonance islands~discussed in the following section!.
Since no nonlinear magnet components were included
these calculations, this nonlinear resonance is appare
driven by nonlinear space-charge self-fields. Particles, wh
horizontal depressed tune closes to 7, experienced sp
charge fields which oscillated 28 times per 1 turn with t
beam-core oscillation due to the 28 FODO cells in KEK-P
In caseB, no nonlinear resonances are found in Fig. 6 b
rather, the growth of the filamentation can be recognized

The time-varying horizontal rms beam sizes in the no
equilibrium state in caseA are shown in Fig. 7. During the
initial few turns, the beam core oscillated with a frequen
almost two times higher than the bare tune in casesA andB.
This is simply tumbling in phase space due to mismatchi
Beyond the 5th turn, the mismatching oscillation disappea
and the beam core oscillated 28 times per 1 turn.

FIG. 1. Comparison betweenPATRASH, ACCSIM, andSIMPSONSin
the horizontal direction.

FIG. 2. Initial phase-space maps:~a! horizontal and~b! vertical.
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The horizontal beam distributions in the nonequilibriu
state in caseA are shown in Fig. 8. The beam distributio
remained Gaussian throughout the initial 10 turns in caseA
andB. Beyond this period, the beam distribution for caseA
drastically changed from Gaussian, as shown in Fig. 9.

The simulation results through a transient state clea
indicate that the beam-core oscillation, which drives the h
formation by the parametric nonlinear resonance caused
coupling with the betatron oscillation of an individual pa
ticle, is dominated by a combination of mismatching and
lattice structure, and then with the lattice structure alo
However, the simulation results cannot clearly indicate w
phenomena occur through this transient state and w
mechanism can drive the phenomena through this trans
condition.

III. FORMALISM OF AN ISOLATED RESONANCE
HAMILTONIAN FOR A GAUSSIAN BEAM

In the early stage of the nonequilibrium state, the wh
view of the time dependent process seems to be observe
using snapshots of the first-order Hamiltonian turn by tu
Therefore, the fully analytic approach to explain the simu
tion results is developed. ThePATRASH’S results indicated
that the Gaussian distribution is kept within the first 10 tur
as shown in Fig. 8. Therefore, it was assumed that the
tribution remains Gaussian under nonequilibrium state. T
space-charge potentialF generated by a beam with th
Gaussian distribution is written in the form of a Taylor e
pansion:

F~x,y;s!5
eN

4pe0
(
n51

`
~21!n

n! (
r 50

n S n

r D f n,r~s!x2(n2r )y2r ,

~1!

FIG. 3. Tune diagrams:~a! caseA and ~b! caseB.

FIG. 4. RMS emittance growth in~a! the horizontal plane and
~b! the vertical plane. The solid line is caseA and the dashed line is
caseB.
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FIG. 5. Phase-space projections at~a! 1st turn,~b! 3rd turn,~c! 5th turn, and~d! 7th turn in caseA.

FIG. 6. Phase-space projections at~a! 1st turn,~b! 3rd turn,~c! 5th turn, and~d! 7th turn in caseB.

FIG. 7. Time-varying rms beam sizes at~a! 1st turn,~b! 3rd turn,~c! 5th turn, and~d! 7th turn in the horizontal direction. CaseA.

FIG. 8. Beam distribution at~a! 1st turn,~b! 3rd turn,~c! 5th turn, and~d! 7th turn in caseA.
036503-3
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f n,r~s!5E
0

` dt

$t12sx~s!2%n2r 1(1/2)$t12sy~s!2% r 1(1/2) ,

whereN is the total number of particles per unit length,e0 is
the permittivity, andsx andsy are the horizontal and vertica
rms beam sizes, respectively. The Hamiltonian describing
betatron oscillation perturbed by the space-charge effec
given in the form

H~x,y,px ,py ;s!5H0~x,y,px ,py ;s!1
e

g2pv
F~x,y;s!,

FIG. 9. Beam distribution after 100th turn in caseA.
03650
e
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whereH0 is the unperturbed Hamiltonian;g, p, andv are the
relativistic mass factor, the momentum, and the velocity
the on-momentum particle, respectively. By introduci
action-angle variables (cx ,cy ,I x ,I y) and an independen
variable u5s/R0 @7#, where x5A2bxI xcos(cx1c0,x), y
5A2byI ycos(cy1c0,y), R0 is the averaged orbit radius,bx
andby are Twiss parameters, andc0,x andc0,y are the flut-
ters of the betatron phase with respect to the averaged p
advance of the unperturbed betatron oscillation, the Ham
tonian is rewritten as

H~cx ,cy ,I x ,I y ;u!5nxI x1nyI y

1
eR0

g2pv
F~cx ,cy ,I x ,I y ;u!. ~2!

The space-charge potential can be separated into oscilla
terms with the angle variable and the other oscillating term
g(N)(u), originating from the flutter, rms beam size, an
Twiss parameter. Then, the space-charge potential is wr
as
F~cx ,cy ,I x ,I y ;u!5
eN

4pe0
(
n51

`
~21!n

n!

1

2n S 2n
n Dgn

(0)~u!I x
n1

eN

2pe0
(
n51

`
~21!n

n!

1

2n
I x

n(
l 50

n21 S 2n
l Dgn,l

(1)~u!cos$~2n22l !cx%

2
eN

2pe0
(
n51

`
~21!n

n!

1

2n
I x

n(
l 50

n21 S 2n
l Dgn,l

(2)~u!sin$~2n22l !cx%1
eN

4pe0
(
n51

`
~21!n

n!

1

2n S 2n
n Dgn

(3)~u!I y
n

1
eN

2pe0
(
n51

`
~21!n

n!

1

2n
I y

n(
l 50

n21 S 2n
l Dgn,l

(4)~u!cos$~2n22l !cy%

2
eN

2pe0
(
n51

`
~21!n

n!

1

2n
I y

n(
l 50

n21 S 2n
l Dgn,l

(5)~u!sin$~2n22l !cy%1
eN

4pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D

3S 2n22r
n2r D S 2r

r Dgn
(6)~u!I x

n2r I y
r

1
eN

2pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D I x

n2r I y
r S 2r

r D (
l 50

n2r 21 S 2n22r
l Dgn,r ,l

(7) ~u!cos$~2n22r 22l !cx%

2
eN

2pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D I x

n2r I y
r S 2r

r D (
l 50

n2r 21 S 2n22r
l Dgn,r ,l

(8) ~u!sin$~2n22r 22l !cx%

1
eN

2pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D I x

n2r I y
r S 2n22r

n2r D (
m50

r 21 S 2r
r Dgn,r ,m

(9) ~u!cos$~2r 22m!cy%

2
eN

2pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D I x

n2r I y
r S 2n22r

n2r D (
m50

r 21 S 2r
r Dgn,r ,m

(10) ~u!sin$~2r 22m!cy%

1
eN

2pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D I x

n2r I y
r (

l 50

n2r 21

(
m50

r 21 S 2n22r
l D S 2r

m Dgn,r ,l ,m
(11) ~u!cos$~2n22r 22l !cx
3-4
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1~2r 22m!cy%2
eN

2pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D I x

n2r I y
r (

l 50

n2r 21

(
m50

r 21 S 2n22r
l D S 2r

m Dgn,r ,l ,m
(12) ~u!

3sin$~2n22r 22l !cx1~2r 22m!cy%1
eN

2pe0
(
n52

`
~21!n

n!

1

2n (
r 51

n21 S n
r D I x

n2r I y
r (

l 50

n2r 21

(
m50

r 21 S 2n22r
l D

3S 2r
m Dgn,r ,l ,m

(13) ~u!cos$~2n22r 22l !cx2~2r 22m!cy%2
eN

2pe0
(
n52

`
~21!n

n!

1

2n

3 (
r 51

n21 S n
r D I x

n2r I y
r (

l 50

n2r 21

(
m50

r 21 S 2n22r
l D S 2r

m Dgn,r ,l ,m
(14) ~u!sin$~2n22r 22l !cx2~2r 22m!cy%, ~3!
ndi-
re
rier

s in

y

ing
ve
be-

ce-
where

gn
(0)~u!5 f n,0bx

n ,

gn,l
(1)~u!5 f n,0bx

ncos$~2n22l !c0,x%,

gn,l
(2)~u!5 f n,0bx

nsin$~2n22l !c0,x%,

gn
(3)~u!5 f n,nby

n ,

gn,l
(4)~u!5 f n,nby

ncos$~2n22l !c0,y%,

gn,l
(5)~u!5 f n,nby

nsin$~2n22l !c0,y%,

gn,r
(6)~u!5 f n,rbx

n2rby
r ,

gn,r ,l
(7) ~u!5 f n,rbx

n2rby
r cos$~2n22r 22l !c0,x%,

gn,r ,l
(8) ~u!5 f n,rbx

n2rby
r sin$~2n22r 22l !c0,x%,

gn,r ,m
(9) ~u!5 f n,rbx

n2rby
r cos$~2r 22m!c0,y%,

gn,r ,m
(10) ~u!5 f n,rbx

n2rby
r sin$~2r 22m!c0,y%,

gn,r ,l ,m
(11) ~u!5 f n,rbx

n2rby
r cos$~2n22r 22l !c0,x

1~2r 22m!c0,y%,

gn,r ,l ,m
(12) ~u!5 f n,rbx

n2rby
r sin$~2n22r 22l !c0,x

1~2r 22m!c0,y%,

gn,r ,l ,m
(13) ~u!5 f n,rbx

n2rby
r cos$~2n22r 22l !c0,x

2~2r 22m!c0,y%,
03650
gn,r ,l ,m
(14) ~u!5 f n,rbx

n2rby
r sin$~2n22r 22l !c0,x

2~2r 22m!c0,y%.

Furthermore,g(N)(u) is expanded by Fourier series as

g(N)~u!5 (
k52`

`

G~k!(N)ejku, ~4!

G~k!(N)5
1

2pE0

2p

g(N)~u!e2 jkudu. ~5!

Then, the oscillating terms in Eq.~3! are described as

g(N)~u!cos~Acx1Bcy!5
1

2 (
k52`

`

G~k!(N)@ej (Acx1Bcy1ku)

1e2 j (Acx1Bcy2ku)#,

g(N)~u!sin~Acx1Bcy!5
1

2 j (
k52`

`

G~k!(N)@ej (Acx1Bcy1ku)

2e2 j (Acx1Bcy2ku)#.

The parametric nonlinear resonances between an i
vidual particle and the intrinsic beam-core oscillation a
known to be excited when the phase of a particular Fou
term, of whichF consists, slowly varies withu. Because the
past simulation results have shown nonlinear resonance
the horizontal direction@3#, we focus on the lowest slowly
oscillating phase 2acx2bu, wherea andb are integers. The
other slowly oscillating phases are given byi (2acx2bu),
where i is an integer. The IRH is known to be obtained b
averaging the Hamiltonian with respect tou @8#. In this pro-
cess, rapidly oscillating terms disappear. Details concern
the evaluation are given in the Appendix. Finally, we arri
at the IRH describing the parametric nonlinear resonance
tween the betatron oscillation and the oscillating spa
charge forces,

Hiso~Cx ,I x ,I y!5S nx2
b

2aD I x1
eR0

g2pv
^F~Cx ,I x ,I y!&,

~6!
3-5
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^F~Cx ,I x ,I y!&5
eN

4pe0
(
n51

`
1

n! S 2n
n DG~0!n

(0)S 2
I x

2 D n

1
eN

4pe0
(
n52

`
1

n! (
r 51

n21 S n
r D S 2n22r

n2r D S 2r
r DG~0!n,r

(6)S 2
I x

2 D n2r S 2
I y

2 D r

1
eN

4pe0
(
i 51

`

(
n5ai

`
1

n! S 2
I x

2 D nS 2n
n2ai DS1~ i ,n!cos~2aiCx!1

eN

4pe0
(
i 51

`

(
n5ai

`
1

n!

3S 2
I x

2 D nS 2n
n2ai DS2~ i ,n!sin~2aiCx!1

eN

4pe0
(
i 51

`

(
n511ai

`
1

n! (
r 51

n2ai S n
r D S 2r

r D S 2n22r
n2r 2ai D S 2

I x

2 D n2r

3S 2
I y

2 D r

S3~ i ,n,r !cos~2aiCx!1
eN

4pe0
(
i 51

`

(
n511ai

`
1

n! (
r 51

n2ai S n
r D S 2r

r D S 2n22r
n2r 2ai D S 2

I x

2 D n2r

3S 2
I y

2 D r

S4~ i ,n,r !sin~2aiCx!, ~7!
is
as a
The
e is
-
ry
where

S1~ i ,n!5
2

p (
u50

n21

an,uE
0

2p

hx
nS sy

sx
D u

3cos$ i ~2ac0,x1bu!%du, ~8!

S2~ i ,n!5
2

p (
u50

n21

an,uE
0

2p

hx
nS sy

sx
D u

3sin$ i ~2ac0,x1bu!%du, ~9!

S3~ i ,n,r !5
2

p (
u50

n22

cn,r ,uE
0

2p

hx
n2rhxy

r S sy

sx
D u22r 11

3cos$ i ~2ac0,x1bu!%du, ~10!

S4~ i ,n,r !52
2

p (
u50

n22

cn,r ,uE
0

2p

hx
n2rhxy

r S sy

sx
D u22r 11

3sin$ i ~2ac0,x1bu!%du, ~11!

G~0!n
(0)5

1

p (
u50

n21

an,uE
0

2p

hx
nS sy

sx
D u

du, ~12!

G~0!n,r
(6)5

1

p (
u50

n22

cn,r ,uE
0

2p

hx
n2rhxy

r S sy

sx
D u22r 11

du,

~13!

an,05~21!n
~2n22!!!

~2n21!!!
,

an,2m5 (
u51

2m S n
uD ~21!u11an,2m2u ,
03650
an,2m115 (
u51

2m11 S n
uD ~21!2u11an,2m2u11

1
~21!m2n21

2m11 S n21
m D ,

cn,r ,05
~21!n

2r 21
,

cn,r ,2m5 (
v50

2m21

cn,r ,vS n
2m2v D ~21!22m1v11

1
~21!m2n11

2m22r 11 S n21
m D ,

cn,r ,2m21,mÞr5 (
v50

2m22

cn,r ,vS n
2m2v21D ~21!22m1v,

cn,r ,2r 215 (
v50

2r 22

cn,r ,vS n
2r 2v21D ~21!22r 1v

1 (
u50

n21
~21!u2n

2u22r 11 S n21
u D ,

hx~u!52
bx

2sx~sx1sy!
, ~14!

hxy~u!52
by

2sx~sx1sy!
. ~15!

Hiso and I y in Eq. ~6! become constants of motion. In th
paper, the position of the resonance islands is chosen
measure of the relative strength of nonlinear resonances.
position of the resonance island for a structure resonanc
given byI xmax andI xmin , which are the maximum and mini
mum values of the action variable along the trajecto
3-6
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through the unstable fixed points. The stable and unst
fixed points can be analytically evaluated from the canon
equations.

Equation~7! were numerically calculated as follows.bx ,
by , c0,x and c0,y can be given as the definition when th
machine parameters such as the tune and the lattice ar
cided. The informations ofsx and sy for each turn were
evaluated byPATRASH, then substituted into Eqs.~8!–~15!. It
is noted that Eqs.~8!–~15! come from the Fourier serie
expansion of Eqs.~4! and~5!. This means that Eq.~7! is time
averaged for one period (0<u,2p). The nonequilibrium
state kept through more than 10 turns as shown in Fig. 4~a!,
which is clearly longer than the above period. Therefore,
time dependent process under nonequilibrium can be
scribed by the averaged Hamiltonian. Moreover,nmax,
which is the maximum limit of summation with respect ton
in Eq. ~1!, and I y were optimized by calculatingI xmax and
I xmin as functions ofnmax and I y , when caseA with 8.5
31011 particle per bunch beam was assumed. The re
saturated aroundnmax520. A larger I y was found to give
smaller resonance islands in the horizontal phase spac
order to estimate the maximum size of the halo, caseI y50
was chosen. A contour plot ofHiso is shown in Fig. 10 and
compared with the simulation result in caseA. Here,a51,
b514, andi max510, which is the maximum value ofi, were
chosen. Furthermore,I xmax and I xmin predicted fromHiso
were compared with the simulation results. They are a
shown in Fig. 11 as functions of the intensity in caseA. Both
results are in good agreement with each other.

IV. NONLINEAR RESONANCES INDUCED BY
COMBINATION OF BEAM-CORE OSCILLATION

As shown in Figs. 4~a! and 5, there are small number o
particles with the horizontally large emittance in caseA,
though the beam distributions still keep the Gaussian fo
~see Fig. 8! at the early 10 turns. As mentioned at the end
Sec. II, the simulation results cannot clearly indicate w
phenomena occur and what mechanism can drive the
nomena by the combination of the beam-core oscillation
to the mismatching and the lattice structure. Therefore
order to manifest what phenomena occurred by the comb
tion of the beam-core oscillation due to the mismatching a
the lattice structure and to predict the position of the ha
the time-varying nonlinear resonances in casesA andB were
examined by the IRH~6! for the early 10 turns. By compar
ing the isolated resonance Hamiltonian of each turn, the p

FIG. 10. ~a! Contour plot of Hiso and~b! simulation result at the
10th turn.
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nomena, which are induced by the combination of the bea
core oscillation due to the mismatching and the latt
structure, can be seen clearly.

The IRH for caseA gives the phase-space structure of t
nonlinear resonances, as shown in Fig. 12. The beam co
known to oscillate due to both the lattice structure and
mismatching, as observed in Fig. 7. In Fig. 12~a!, b is 14,
which is the beam-core oscillation frequency due to the m
matching per 1 turn, as observed in Fig. 7~a!. The two reso-
nance islands induced by mismatching are recognized in
12~a!. In Fig. 12~b!, b is 28, which corresponds to the per
odicity of the lattice structure. The four resonance islan
induced due to the lattice structure are confirmed in F
12~b!. Including the multiple-beam-core oscillation, the no
linear resonances caused by the lattice structure and
matching overlap, as shown in Fig. 12~c!.

Next, the IRH for casesA andB was calculated for every
turn. The phase-space structures for caseA are shown in Fig.
13. The resonance caused by mismatching is dominan
early few turns because the mismatching remains there
shown in Figs. 7. Furthermore, the nonlinear resonanc
switched to the structure resonance, after the decay of m
matching due to the growth of filamentation. Thus, the h
tends to grow in the tune pair of caseA. The phase-space
structures for caseB are shown in Fig. 14. The resonanc
caused by mismatching is dominant, similar to that of caseA.
However, because the condition of the structure resonanc
not satisfied since the depressed tune is far from 7, the n
linear resonance is rapidly lost after decay of the mismat
ing. The particles moving to the resonance island caused
mismatching are thought to be smeared out due to the n
linear space-charge fields.

The difference in the time-varying nonlinear resonan
between casesA andB should be explained by the depress
tune. The depressed tune is given by the time-averaged
nonical equation@Eq. ~2!#, substituting Eq.~3! ~see the Ap-
pendix! as

K dcx

du L 5 K ]H

]I x
L 5nx1

eN

4p«0
(
n51

`
1

n! S 2n
n DG~0!n

(0)S 2
I x

2 D n

1
eN

4p«0
(
n52

`
1

n! (
r 51

n21 S n
r D S 2n22r

n2r D
3S 2r

r DG~0!n,r
(6)S 2

I x

2 D n2r S 2
I y

2 D r

. ~16!

FIG. 11. Intensity dependence of the position of the resona
island ~10th turn!.
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FIG. 12. Phase-space structure of Hiso in caseA. The nonlinear resonance caused~a! by mismatching (i max51, a51, andb514), ~b!
by the lattice structure (i max51, a52, andb528) and~c! by the superposition of~a! and ~b! ( i max510, a51, andb514).

FIG. 13. Time varying of Hiso in caseA. ~a! 1st turn,~b! 3rd turn,~c! 5th turn, and~d! 7th turn. i max510, a51, andb514.

FIG. 14. Time varying of Hiso in caseB. ~a! 1st turn,~b! 3rd turn,~c! 5th turn, and~d! 7th turn. i max510, a51, andb514.

FIG. 15. Depressed tune in cases~a! A and ~b! B.
036503-8
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HALO FORMATION AT EARLY STAGE OF INJECTION . . . PHYSICAL REVIEW E68, 036503 ~2003!
The depressed tunes of Eq.~16! substituting the rms beam
size evaluated byPATRASH are shown in Fig. 15. The reso
nance line, which is close to 7, is shown in both bare tun
The resonance island tends to become smaller when the
nance point on the resonance line becomes closer toI x50.
That is, the resonance point becomes closer toI x50 whenI y
becomes larger. Furthermore, the resonance point of caB
is closer toI x50 than forA when I y50.

V. CONCLUSION

Though the coupling between the nonlinear betatron
cillation of individual particles and the beam-core oscillati
seems to drive the halo formation by a mechanism involv
the parametric nonlinear resonance, the simulation res
cannot clearly prove what phenomena precisely happe
the process and what mechanism can drive these phenom
An isolated nonlinear resonance theory has been establi
to understand the whole story, which can consistently exp
the phase-space dynamics at the early stage of injection.
isolated nonlinear resonance Hamiltonian has been prove
be a useful tool to estimate the position and size of the h
which is quite important in a practical sense. It has be
concluded that the halo is driven by a time-varying nonlin
resonance excited by the intrinsic beam-core oscillation
the nonequilibrium state.
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In the derivation of IRH, the momentum spread is su
posed to be 0 for simplicity, but the application of the dev
oped analytic tool is straightforward for on-momentum
While the nonlinear resonances in only the horizontal dir
tion are taken into account in this paper, the vertical a
coupling resonances are similarly applied in this theory.
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APPENDIX: DERIVATION OF EQ. „6…

We derive the time-averaged space-charge potential of
~3!. Here, the horizontal and vertical action variables we
assumed to change little in each 1 turn. The time-avera
terms of 5th, 6th and from 10th to 15th in Eq.~3! are all
removed because these terms do not include the slowly
cillating term. For the time-averaged 1st, 4th, and 7th ter
of Eq. ~3!, the oscillating terms are removed so that only t
constant terms remain. The time-averaged 2nd term of
~3! can be rewritten by using Eq.~4! as
K eN

2p«0
(
n51

`
~21!n

n!

1

2n I x
n(

l 50

n21 S 2n
l Dgn,l

(1)~u!cos$~2n22l !cx%L
5

eN

4p«0
K (

n51

`
~21!n

n!

1

2n I x
n(

l 50

n21 S 2n
l D (

k52`

`

G~k!n,l
(1)cos$~2n22l !cx1ku%L

1
eN

4p«0
K (

n51

`
~21!n

n!

1

2n I x
n(

l 50

n21 S 2n
l D (

k52`

`

G~k!n,l
(1)cos$~2n22l !cx2ku%L

1 j
eN

4p«0
K (

n51

`
~21!n

n!

1

2n I x
n(

l 50

n21 S 2n
l D (

k52`

`

G~k!n,l
(1)sin$~2n22l !cx1ku%L

2 j
eN

4p«0
K (

n51

`
~21!n

n!

1

2n I x
n(

l 50

n21 S 2n
l D (

k52`

`

G~k!n,l
(1)sin$~2n22l !cx2ku%L . ~A1!

Because the slowly oscillating phase is assumed asi (2acx2bu) in Sec. III, the terms includingi (2acx2bu) are picked up
from (2n22l )cx6ku in Eq. ~A1!. Since the other terms are removed by time averaging, Eq.~A1! can be rewritten as

K eN

2p«0
(
n51

`
~21!n

n!

1

2n I x
n(

l 50

n21 S 2n
l Dgn,l

(1)~u!cos$~2n22l !cx%L
5

eN

4p«0
(
i 51

`

(
n5ai

`
1

n! S 2
I x

2 D nS 2n
l D P~bi !n,n2ai

(1) cos$ i ~2acx2bu!%

1
eN

4p«0
(
i 51

`

(
n5ai

`
1

n! S 2
I x

2 D nS 2n
l DQ~bi !n,n2ai

(1) sin$ i ~2acx2bu!%,
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where

P~bi !(N)5G~2bi !(N)1G~bi !(N),

Q~bi !(N)5 jG~2bi !(N)2 jG~bi !(N).

In the same way, the time-averaged 3rd, 5th, and 6th terms of Eq.~3! are given. Thus, the time-averaged space-charge pote
of Eq. ~3! is written as

^F~cx ,cy ,I x ,I y ;u!&5
eN

4p«0
(
n51

`
1

n! S 2n
n DG~0!n

(0)S 2
I x

2 D n

1
eN

4p«0
(
n51

`
1

n! S 2n
n DG~0!n

(3)S 2
I y

2 D n

1
eN

4p«0
(
n52

`
1

n! (
r 51

n21 S n
r D

3S 2n22r
n2r D S 2r

r DG~0!n,r
(6)S 2

I x

2 D n2r S 2
I y

2 D r

1
eN

4p«0
(
i 51

`

(
n5ai

`
1

n!

3S 2
I x

2 D nS 2n
n2ai DS1~ i ,n!cos$ i ~2acx2bu!%1

eN

4p«0
(
i 51

`

(
n5ai

`
1

n!

3S 2
I x

2 D nS 2n
n2ai DS2~ i ,n!sin$ i ~2acx2bu!%1

eN

4p«0
(
i 51

`

(
n511ai

`
1

n! (
r 51

n2ai S n
r D S 2r

r D S 2n22r
n2r 2ai D

3S 2
I x

2 D n2r S 2
I y

2 D r

S3~ i ,n,r !cos$ i ~2acx2bu!%1
eN

4p«0
(
i 51

`

(
n511ai

`
1

n! (
r 51

n2ai S n
r D S 2r

r D S 2n22r
n2r 2ai D

3S 2
I x

2 D n2r S 2
I y

2 D r

S4~ i ,n,r !sin$ i ~2acx2bu!%, ~A2!
.

c-
where

S1~ i ,n!5P~bi !n,n2ai
(1) 1Q~bi !n,n2ai

(2) , ~A3!

S2~ i ,n!52P~bi !n,n2ai
(2) 1Q~bi !n,n2ai

(1) , ~A4!

S3~ i ,n,r !5P~bi !n,r ,n2r 2ai
(7) 1Q~bi !n,r ,n2r 2ai

(8) , ~A5!

S4~ i ,n,r !52P~bi !n,r ,n2r 2ai
(8) 1Q~bi !n,r ,n2r 2ai

(7) .
~A6!

G(0)n
(0) , G(3)n

(0) , G(6)n
(0) , and Eqs.~A3!–~A6! can be in-

tegrated by using Eq.~5! and

E
0

` dt

~ t1a2!n1(1/2)~ t1b2!(1/2) 5
2~21!n

an~b1a!n (
u50

n21

an,uS b

aD u

,

03650
E
0

` dt

~ t1a2!n2r 1(1/2)~ t1b2!r 1(1/2)

5
2~21!n

an~b1a!n (
u50

n22

cn,r ,utu22r 11.

The time-averaged Hamiltonian of Eq.~2! is given by
using Eq.~A2! as

^H~cx ,cy ,I x ,I y ;u!&5nxI x1nyI y

1
eR0

g2pv
^F~cx ,cy ,I x ,I y ;u!&. ~A7!

Sincedcy /du5d^H&/dIy50, I y is the constant of motion
Therefore, we remove the 2nd term of Eq.~A2! and the 2nd
term of Eq.~A7!. Furthermore, sincêH& is not a constant of
the motion, the canonical transformation from (cx ,I x) to
(Cx5cx2bu/(2a),I x) is made, where the generating fun
tion is F2(cx ,I x)5$cx2bu/(2a)%I x . Thus, the isolated
resonance Hamiltonian~6! and is obtained.
3-10



-

M

gh

r

f

HALO FORMATION AT EARLY STAGE OF INJECTION . . . PHYSICAL REVIEW E68, 036503 ~2003!
@1# H. Okamoto and M. Ikegami, Phys. Rev. E55, 4694~1997!.
@2# M. Ikegami, Nucl. Instrum. Methods Phys. Res. A435, 284

~1999!.
@3# Y. Shimosaki and K. Takayama, inProceedings of the 7th Eu

ropean Particle Accelerator Conference, edited by J.-L.
Laclare, W. Mitaroff, Ch. Petit-Jean-Genaz, J. Poole, and
Regler~Austrian Academy of Sciences Press, Vienna, 2000!, p.
1330.

@4# F. W. Jones, inWorkshop on Space Charge Physics in Hi
Intensity Hadron Rings, Shelter Island, NY, 1998, edited by A.
03650
.

U. Luccio and W. T. Weng, AIP Conf. Proc. No. 448~AIP,
Woodbury, NY, 1998!, p. 359.

@5# J. Makino, Bull. Jpn. Soc. Ind. Appl. Math.8~4!, 277 ~1998!.
@6# K. Takayamaet al., in Accelerator Technical Design Report fo

J-PARC ~JAERI/KEK joint project!, KEK Report No. 2002-
13, JAERI-Tech 2003-044, p. 140~unpublished!.

@7# D. Edwards and M. Syphers,An Introduction to the Physics o
High Energy Accelerators~Wiley Interscience, New York,
1993!.

@8# Y. Shimosaki and K. Takayama, Phys. Rev. E62, 2797~2000!.
3-11


